Extensions 1→N→G→Q→1 with N=C32 and Q=C2x3- 1+2

Direct product G=NxQ with N=C32 and Q=C2x3- 1+2
dρLabelID
C3xC6x3- 1+2162C3xC6xES-(3,1)486,252

Semidirect products G=N:Q with N=C32 and Q=C2x3- 1+2
extensionφ:Q→Aut NdρLabelID
C32:1(C2x3- 1+2) = C9:He3:C2φ: C2x3- 1+2/C9C6 ⊆ Aut C32546C3^2:1(C2xES-(3,1))486,107
C32:2(C2x3- 1+2) = C34.C6φ: C2x3- 1+2/C32C6 ⊆ Aut C32186C3^2:2(C2xES-(3,1))486,104
C32:3(C2x3- 1+2) = C2xC9:He3φ: C2x3- 1+2/C18C3 ⊆ Aut C32162C3^2:3(C2xES-(3,1))486,198
C32:4(C2x3- 1+2) = C2xC34.C3φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C3254C3^2:4(C2xES-(3,1))486,197
C32:5(C2x3- 1+2) = C3xS3x3- 1+2φ: C2x3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2:5(C2xES-(3,1))486,225
C32:6(C2x3- 1+2) = C3:S3x3- 1+2φ: C2x3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2:6(C2xES-(3,1))486,233

Non-split extensions G=N.Q with N=C32 and Q=C2x3- 1+2
extensionφ:Q→Aut NdρLabelID
C32.1(C2x3- 1+2) = C2xHe3:C9φ: C2x3- 1+2/C18C3 ⊆ Aut C32162C3^2.1(C2xES-(3,1))486,77
C32.2(C2x3- 1+2) = C2x3- 1+2:C9φ: C2x3- 1+2/C18C3 ⊆ Aut C32162C3^2.2(C2xES-(3,1))486,78
C32.3(C2x3- 1+2) = C2xC9:3- 1+2φ: C2x3- 1+2/C18C3 ⊆ Aut C32162C3^2.3(C2xES-(3,1))486,200
C32.4(C2x3- 1+2) = C2xC33:C9φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C3254C3^2.4(C2xES-(3,1))486,73
C32.5(C2x3- 1+2) = C2xC32.19He3φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C32162C3^2.5(C2xES-(3,1))486,74
C32.6(C2x3- 1+2) = C2xC32.20He3φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C32162C3^2.6(C2xES-(3,1))486,75
C32.7(C2x3- 1+2) = C2xC27:C9φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C32549C3^2.7(C2xES-(3,1))486,82
C32.8(C2x3- 1+2) = C2xC33.31C32φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C32162C3^2.8(C2xES-(3,1))486,201
C32.9(C2x3- 1+2) = S3xC32:C9φ: C2x3- 1+2/3- 1+2C2 ⊆ Aut C3254C3^2.9(C2xES-(3,1))486,95
C32.10(C2x3- 1+2) = S3xC9:C9φ: C2x3- 1+2/3- 1+2C2 ⊆ Aut C32162C3^2.10(C2xES-(3,1))486,97
C32.11(C2x3- 1+2) = C2xC3.C92central extension (φ=1)486C3^2.11(C2xES-(3,1))486,62
C32.12(C2x3- 1+2) = C6xC32:C9central extension (φ=1)162C3^2.12(C2xES-(3,1))486,191
C32.13(C2x3- 1+2) = C6xC9:C9central extension (φ=1)486C3^2.13(C2xES-(3,1))486,192

׿
x
:
Z
F
o
wr
Q
<